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IN A PIPE OF FINITE 

A solution is obtained of a linearized. initial-boundary-value problem of the unsteady motion of a viscous 

fluid in a cylindrical pipe of circular cross-section with a horizontal axis, under the assumption that the 

pressure at one end of the pipe is constant, and at the other end a device is set up which changes the flow 

rate of the fluid. It is shown that, depending on the relations between the defining parameters of the 

problem, the solution tends asymptotically either to a periodic solution, or to one of the two stable 

steady-state solutions. These results are obtained using methods similar to those developed in [l-3]. where 

the unsteady motions of ground waters during the irrigation were considered, taking into account the 

evaporation from the regions between the channels. It was assumed there that the irrigation. which was 

carried out at a constant rate. was switched on and off depending on the level of ground waters in the 

inspection well. 

THE FOUATIONS of unsteady motions of a viscous fluid in pipes, taking hydraulic resistance into account, were 
derived in [4] for laminar, as well as turbulent flows. Using the assumptions that the pressure at one end of the 
pipe is a known function of time and that the other end is fitted with a device which changes the flow rate 
according to a prescribed, time-dependent law (a piston pump, a sluice valve, a turbine or a compressor), and 
the device is fitted to the pipe either directly, or through a chamber used as a flow-rate regulator or as a 
pressure oscillations damper (an air chamber, equalizing chamber or receiver), Charnyi as well as Rozenberg 
and Buyanovskii solved a large number of specific problems. Here either it was assumed that there was no 

motion, or that the motion was steady when t s 0, or periodic motions were considered. 

1. We shall consider the unsteady motion of a viscous incompressible fluid of density p, in a pipe of finite 
length 1 of circular cross-section, with a horizontal axis. At one end of the pipe (x = 0) the pressure is constant 
(equal, in particular, to the atmospheric pressure) and a device mentioned earlier is attached to the other end 
(X = I), and at the initial instant of time the values of velocity u and pressure p within the pipe are given. We 
assume that when a chamber is present within the device the flow rate 4 from the device is a Rayleigh-type 
function of velocity u, with a non-singlevalued section u+* < u< u* (Fig. 1): 

{ 

91 (u<u*) 
n(u)= 

QZ (u>n**I 
(1.1) 

(cll%Q 

Moreover, when u = u* and u = u**, we have jumps from one branch of the function to the other, as shown 
in Fig. 1. When there is no chamber, the flow rate 4 (which is identical in this case with the velocity u at x = 1 is 
a function of time t: 

q(t)+ 
I 

q*(nTtrcT,+nTf 

q,(T,+nTcLc(n+i)T) 

(n=O, f, 2,. . .) 

(1.2) 

(henceforth. in some of the cases we shall assume that relation (1.2) also holds when a chamber is present). 
We shall agree, to fix our ideas, that if u:~* <u < 14:~ at the initial instant of time t = 0, then q = q, 
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We shall also assume that the velocity u is much less than the velocity of sound in the pipe, which is important 
in the case of a liquid. 

The study of the motion reduces to finding, in the region (O<x<f, t>O), a solution of the initial-bounda~- 
value problem for the system of two quasilinear partial differential equations quoted in [4]. 

Eliminating from this system the pressure p and changing to dimensionless coordinates 

2=x$, r=ctJl, u=ujc (1.3) 

we reduce the problem to that of solving, in the region (Otz< 1, I>()), a single non-linear. second-order 
partial differential equation 

@U 82U 

( 

av.i au au 

-=T+ u- a+ z 
---+xdr.. -.((i); 

a2 a~ 1 (1.4) 

describing one-dimensional motion. 
The initial and boundary conditions are, respectively, 

uf2, oj=u,(~), at'fz, o)iar=v,+f (1.5) 

aufo, T)/at=o, b&7(1, r)lf?z+ff(l, T)=c‘?tIU(i, T), Tl (1.6) 
The function q (U, T) is given by the formulas (1.1) or (1.2), b > 0 is a dimensionless parameter characterizing 

the type of chamber, and when there is no chamber h = 0. 
In the case of a pipe of circular cross-section and turbulent flow, we have A = 2, a(U) = ii?, and in the case 

of laminar flow A = %, u(U) = 2v; 5 and v>O are dimensionless parameters depending on the type of flow and 
the properties of the pipe [4]. The functions Q,(z) and V,,(z)are assumed to satisfy the Dirichlet conditions. 

Assuming from the isotropic nature of the flow that U = EU, + E’U, where E >O is a small dimensionless 
parameter iwe can. for example, assume that F = (q, +q2)l(2c) or F = q,/c) and restricting 
first approximation, we obtain from (1.4) the following linear equations for the function f.J, : 

d”ii,lih2=iPU,lW 

il?(l,lJr=+2vaU,lar~aZLitl~1Z 

ourselves to the 

(1.7) 

(1.X) 

Equation (1.7) holds for turbulent and (1.X) for Iaminar flow. 
Charnyi assumed in [4] that when the inequality v 2~12 is satisfied the telegraph equation (1.8) can he 

replaced by the heat conduction equation 

2vau,/dr=aw~lazf 

As usual, we shall require that the function U, must satisfy conditions (1.6) 

aU,(O, r)ldz=O, biW,(i, r)/ch+Ut(j, T)-Q[Cf,(i, z), r] 

P?=qi(tcf! 

(1.9) 

(1.10) 

We shall assume that Eqs (1.7)-(1.9) must be solved using the initial conditions (1.5) and boundary 
conditions (l.lO), where Uis replaced by U1 (the second condition of (1.5) for (1.9) is missing). 

Thus we have formulated for the function U, (of the first approximation) three initial-boundary-value 
problems (henceforth we shall restrict ourselves to solving these three problems), 



Motion of viscous fluid in a pipe of finite length 289 

Henceforth we shall call every problem of solving Eqs (1.7) (1.8) and (1.9) in the region (O<ztl, T>O), 
with conditions (1.5) and (l.lO), the first, second and third problem respectively, and one with conditions 
(1. lo), the problem without initial conditions. 

We note that after solving each of these three problems defining the first approximation i/r, we can find the 
second approximation fJZ as a solution of some linear problem with zero initial and boundary conditions, 
assuming in the latter that Y = 0. 

Using the Fourier method, solving the regular Sturm-Liouville problem and assuming that 

U(Z, T) z { 
‘i+” (t,T) (5“9;7GS<,(+() “(i+*) 

a2 (2,d (Sc.r+t~Tt&+d 
i 

j-0 

we find 
,‘i-tl) 

UI =Q,+exp[-u(T--&)]x 
D 

X c Kr’~ COS WI (r-S<) +Cz +” Sin Ok (T--S<) ]COS pkz 

I.=1 

'i+L'=Q2+eXp[-V(r-Si,i+l)]X 112 
(D 

(1.11) 

(1.12) 

(1.13) 

k=, 

Here Fk (k = 1, 2, . .) are the roots of the transcendental equation 

ctg p=bp (1.14) 

~~=~(~~2-~2)if~~>~.If/L~<~,thencos~~~andsin~~~in(l.l2)and(l.13)mustbeplacedbyChU~Xand 
shCrkX respectively, where ok = V(v’-- pk2). 

We will assume in formulas (l.ll)-(1.13) to fix our ideas, that Qi = Q, when r = 0 (it is clear that this 
restriction is not essential). 

The coefficients Crk(‘) and &k(l) are found from the initial conditions (1.5), and the remaining constants 
-L)ikti+If (i = 0, 1, 2, a . .), Cjkfifl) (i = 1, 2, < , .), j = 1, 2 are determined successively from the conditions for 
matching the functions and their derivatives in 7 at some instants of time, namely 

fi+Zt (L,Si+#)=U:i+” (Z,Sif~)i 
au1 (i+2)(Z, St+*) a::+” (2, St+,) 

UI = 
af a% 

When b = 0 we have in (l.ll), by virtue of (1.2), 

T(jr=Z’, T,(ir=T, (i, j=i,2, ,. .), T=cT/l, Tg=cT*/l 

If b > 0, the constants T,(‘+‘) and Tz(‘+ ‘) = T(‘+‘) - Tr@+‘) will be found successively from the conditions (Figs 

1 and 2) 

u,(i+ib(i, Sr, i+()=U*, u~(~+tr(i, Si+,)=[I.. (U.=u./cC, U..=u../ec) 

as the smallest roots of these equations. 
The above conditions show that cases are possible in which the value U* or U,* will not be reached over a 

finite interval of time (or, in an infinitely long time interval these values will be reached only a finite number of 
times). 

2. Using relations (1.12)-(1.14) and the similar solution of the third problem (which we shall not write out 
here), we can see that all three problems without the initial conditions will have Lyapunov-stable steady 
solutions (while the second and third problem will also have asymptotically stable steady solutions) 

utz, T)=Qt. U(z, rl=Qt (2.1) 
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Using relations (1.12)-( 1.14) and Fig. 2 we can confirm that when h = 0 and when h > 0 and condition (I .2) 
holds, the solution of each of three problems tends asymptotically to some limit solution. For the second and 

third problem the solution is periodic, and for the first problem it represents the sum of the solution (1.12) 
where i = Q, = v = 0. and a periodic solution, which we shall write out presently, assuming that its period is 
equal to Tand using its following two representations: (1) one similar to (1.12)-( 1.14) where we have put v = 0. 
and (2) one obtained directly in the form of a Fourier series uring (I .7). (1.10) and (I .2) where n = 0, 3~ I, 312, 

; if on the other hand the results hold for the second and third problem and the inequality h>O holds, 
provided that condition (1.1) holds and 

Q,<U,.GI.<Q, (2.2) 

The first of these representations has the form 

The second representation is given by the relation 

c~(s,T)=iT(z,T)= 
C~,T,+(r)*r(7’.-T,) 

+ 
T 

+ c (c, c~su~r+d,, sin a,,rj 2nn 
cos a,,~, an 

(co9 a,,- hu,, sin a,) T 
n--l 

((Jr-&) (I -co.4 an7’,) ([I,.-(&) Sin anT, 
C* -= ,j, T= 

x ” I n 

(Here we assume that h 3 0 and the boundary condition ( 1.2) is used.) 

(2.3) 

(2.4) 
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In the case of resonance formulas (2.3) and (2.4) must be modified. 
Let the relation ctgcw, = bet, hold when n = s. Then for any k = m we have (Y, = l.~,,, or T = 2~,s/l.~,,, , and 

sin(ti) k,,, T = 0 and the terms containing k = m and n = s on the right-hand sides of formulas (2.3) and (2.4) 
respectively, become infinite. (It can be shown that if T, = T/2, s = 2r, then the singularity will be removed.) 

For the time being we shall assume, for simplicity, that formulas (2.3) and (2.4) contain only a single term 
containing k = m and n = s (since the problem is linear, the restriction is not important). 

Using the first formula of (2.3) and (1.14), we obtain 

L[u,(t,T)l=bau,(i,r)ld~+u,(i,r)- 

=()r-nm.4m sin(‘I,)~,(T-T,)r.os(‘l:)II,(T-_T1) 

A,-(cos pm-bp,sin p,)isin(1/2)p,,T 

Using the I’Hopital’s rule to expand the indeterminancy we find that the quantity A,,, is finite and non-zero 

forallb~O.ItcanbeshownthatL[u~(l.~)]=L[u,(l.~)]+Q~-Q~, and it follows from (2.5) that 

.!Jav(t, T)/at+f/(I, r)= (2.6) 

The second term on the right-hand side of (2.6) taken with the m&us sign, represents the sth term of the 

expansion of the quantity baLI(1, T)/~z+ c(l, T) where the function U(z, r) is given by the formula (2.4), i.e. 
b&(1, ~)/az+Li,(l, T). 

Thus, from (2.6) and (1.10) it follows that we have obtained a periodic solution of the second problem with 

boundary conditions (l.lO), the term corresponding to the resonant term with k = m in formula (2.3) and with 
n = s in formula (2.4), is removed. Therefore in order to obtain the solution of the problem in question we must 
replace this term in (2.3) and (2.4) by w(z, T) = a,(~, T), i.e. by the solution of the first problem without initial 
conditions, with boundary conditions 

(2.7) 
(L&(r) =b&(i, I)/dz+iiy(f, 1) =cs c0.s IlmT+& sin PmT) 

By virtue of the first condition of (2.7) we find that w(z, T) =f(T + z) +f(~ - z) where f(x) is the unknown 
function, and from the second condition of (2.7) we obtain for it the following differential-functional equation: 

b[l’(l+l) -f’(T--1)]+/(T.+i)+/(T--1) -B,(T) 

whose solution, by virtue of the second condition of (2.7). has the form 

(2.8) 

f(~) =--(‘IZ)~NS’(T) (pm[ (D+l)sin t~~,fhu, cos umJ}-’ 

Thus the periodic solution is replaced, in the case of resonance, by a solution containing secular terms. 

Similar results are known for other problems (see e.g. [5]). 
It can be shown that there is no resonance in the solution of the second problem without initial conditions. 
Formulas similar to (2.3) and (2.4), d escribing the solutions of the second and third problem without initial 

conditions and without a chamber (b = 0), also determine the forced oscillations (in which case the influence of 
the initial conditions vanishes). As for solving the first problem without initial conditions for the case of b > 0 
and in the case of finding the forced oscillations we must add to the solution (2.3), as we mentioned above, the 
solution (1.12) ut(‘)(z, 7) of the first problem (where we put v = Q, = 0). 

Comparing the solutions of the first and second problem we see that when v-+0, then the condition of 

“vanishing friction”, introduced for other problems [6], holds. 
When a chamber is in place (b > 0), the formulas similar to (2.3)-(2.4) for the second problem, describe the 

self-excited oscillations which occur under the conditions (2.2), and formulas (l.ll)-( 1.14) describe the flow for 
given initial conditions for any instant of time, i.e. the process by which these self-excited oscillations appear. 

If conditions (2.2) do not hold (for example if Q2< U** < Q, < U* , as shown in Fig. 3), then cases are 

possible in which self-excited oscillations do not appear. For example, if u>O, then for some values of the 
functions 01,,(z) and V,(z) (O<z< 1) appearing in the initial conditions (1.5), the motion will tend 
asymptotically to a steady state described by the first relation of (2.1). 
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Ftc;. 3. 

Example. Let lin(z) = C: = const, V,,(z) = 0. Then formula (1.12) in which we put i = 0, will take the form 

(2.9) 
(l’=Zb-‘(C-Q,), ,,a-COS’ jkk( bj&k’+cOr;’ jLk) -‘) 

If the inequality 

Ccc& + ;cr:*-0,) [i [#k.$ i!] --f 

I&=, (I=, 

holds, then from (2.9) we see that the value of li* will never be attained by the function u,(‘)( 1, T). 
The numerical values of the first seven parameters t.~/, and q appearing in (2.9) are given below for 

h = 3.3446605 x lo-‘. u = 1.4: 

k 1 2 3 4 5 6 7 
FI, 1.52 4.561 7.605 10.653 13.707 16.769 19.833 
wk 0.552 4.341 7.475 10.561 13.636 16.710 19.784 

Using the methods developed earlier in [2, 31 we can confirm that the results obtained for the third problem 
are completely analogous to the results obtained above for the first and second problem; in particular, there is 
no resonance. 
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